
A Review of Formal Program Verification Tools Based on the
Boogie Language

Inaam Ahmed, Theodore S. Norvell, and Ramachandran Venkatesan
Dept. Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial University of Newfoundland & Labrador
inaama@mun.ca, theo@mun.ca, venky@mun.ca

Abstract— Errors in the software are hazardous. Testing
software, before its deployment, may catch some errors present
in the software. However, testing does not guarantee their
absence. Several formal verification tools have been built and
used for formal verification to ensure the correctness of software
in different programming languages. The Boogie language is a
common intermediate representation for static verification of
programs written in several high-level programming languages.
In this paper, notable software verifiers such as Dafny, VCC,
HAVOC, Verve, and Chalice are described and analyzed for
similarities and dissimilarities with the HARPO verifier.

Index Terms— Automated Verification, HARPO Verifier, For-
mal Verification

I. I NTRODUCTION

Software failure is fatal. It costs money and sometimes
lives. The prevalent software design approaches are not ma-
ture enough to prove the correctness of software using rig-
orous testing. Even with rigorous testing, there are countless
ways for a program to go wrong. While testing can be useful
for finding errors in software, it can not be used to show their
absence [1]. Therefore various forms of analysis can be used
[2].

Sequential Programs:Sequential programs are hard to
write correctly. The correctness of these programs primarily
depends on implicit assumptions. For instance, a programmer
can easily assume that a variable lies inside the array bounds,
a function parameter is not null, contents of specific memory
locations are not read by a method, data structures are
accessed and manipulated with a specific protocol. How can
a programmer reason for these assumptions? It is strenuous
for them to verify that their assumptions are correct. Thus,
writing correct sequential programs is tough.

Concurrent Programs:Concurrent programs are even
harder to write. Data races, interference among threads,
deadlocks and live-locks, data hiding and abstraction, and
modularity are some of the challenges concurrent program
writing incurs. The programmer must assume the effects
of interference of a thread with all other threads currently
running. Memory access is another challenge for a program-
mer; while one thread is accessing a memory location, other
threads must not access the location concurrently. Locking
mechanism enforce assumptions on locations protected by
locks such as acquiring locks will not result deadlock.

The formal software verification approach can increase
the productivity of a programmer and decrease the cost
of dependable software production by reducing the cost of
changing the software in and after development cycle. A
standard approach for formal program verification is to use
the automated theorem-proving technique [3].

Developing a verification tool is a process involved with
complexity and criticality. It encompasses compilation tech-
nology, formal semantics, generation of verification condi-
tions, translating the results into decisions and an interactive
user interface. Source code together with program specifi-
cations in a higher programming language is translated into
VCs. However, generating VCs for theorem provers is a
complicated task. A common approach to deal with this
complexity is to use an intermediate verification language.
The verification process into two main steps: Translating
the program specifications into an intermediate verification
language (IVL) Boogie. Later, the Boogie source is converted
into VCs and checked by the Boogie verifier to generate an
error report.

Dafny, VCC, Chalice, Verve, and HAVOC are some of
the tools that use Boogie and an intermediate verification
language [3].

In this paper, an eventful backend of a formal verification
system called Boogie Intermediate Verification Language
is discussed, and number of efficacious verifiers based on
Boogie backend are reported as follows: Section II describes
the Hoare-style automated verifier named Boogie and Boogie
Verification Language. Later sections describe the verifiers
based on Boogie. Section III provides details of Dafny
verifier; Section IV describes the concurrent C verifier named
VCC; Section V describes a verifier named Chalice, and
idea of permissions transfer approach for verification; Section
VI describes a distinct verifier targeting only system soft-
ware verification system named Verve; Section VII describes
HAVOC, a scalable verifier for heap data structures. Section
VIII describes Spec# verifier; Section IX describe AutoProof
approach Eiffel using AutoProof; Section X describe an
Extended Static Verifier which used same staging approach
for verification conditions generation like rest of the verifiers
in this paper used; Section XI describes our own verifier for
HARPO language named HARPO Verifier with description of
its design and evaluation. Section XII presents Conclusion.



II. B OOGIE

Boogie was developed by Hoare-Logic based program
verifier[3]. Boogie language is an intermediate verification
language used as a common intermediate representation in
the verification of other higher-level programming languages.
Boogie can also be used as an input/output format for the
abstract representation and predicate abstraction. Internally,
Boogie performs a series of transformations of source pro-
gram into verification conditions to error report. Boogie,
previously known as BoogiePL, as a language has impera-
tive and mathematical components. A challenge is to create
verification conditions Boogie verifier uses SMT solvers [4],
such asZ31, to determine the truth of verification conditions.

III. D AFNY

The Dafny programming language is designed to write
programs using built-in specification constructs. Dafny’s treat-
ment of locations is based on dynamic frame theory [5], [6].
Its compiler can produce executables for the .NET platform.
Dafny attempts to determine the correctness of programs by
checking the parts of the program for their own correctness
and then infer the correctness of complete program based on
smaller parts. The use of dynamic frames enables Dafny to
prove the correctness when data-abstraction is used [8].

The Dafny programming language consists of imperative
and sequential constructs, generic classes, dynamic allocation,
and specification constructs. Dafny’s specification constructs
are pre-condition, post-condition, read set, write set, loop
invariants and loop termination metrics. Types include alge-
braic, sets, and sequences. Ghost constructs and specifications
and ignored when executable code is being generated. Dafny’s
verifier generates the Boogie and the Boogie tool is used to
generate the verification conditions whichZ3 checks.[7]

The program verification process of Dafny is like many
automatic verifiers using Boogie as their back end. A program
written in Dafny is translated into Boogie and such that
the correctness of the Boogie representation implies that
the Dafny programs are correct [14]. Failures of VCs to
verify are passed back to Dafny and processed to report
meaningful errors and warnings in Dafny source code. Dafny
was designed with verification in mind. And due to that,
programs in Dafny are cleaner than programs in other verifiers
such as VCC. Dafny is now a common choice for teaching
and learning automated program verification.

IV. VCC

VCC (Verifier for Concurrent C) is layered on top of the
C language for verification purposes. VCC was developed
in Microsoft Hypervisor Verification Project (MHVP). The
project was intended to provide verification of functional
correctness properties of various software types, including
commercial, system software, off-the-shelf software, and Mi-
crosoft Hyper-V. [8]

1Z3 us a state-of-art first-order theorem prover the support Satisfiability
Modulo Theories (SMT).

VCC verification methodology is based on inline annota-
tions in source code. Annotations are also called contracts
for verification. These annotations are eliminated while gen-
erating the output of regular C compilation. However, for
verification purposes, the output from preprocessor accom-
panying annotation supplied to VCC. VCC takes input and
converts annotated C program into an internal representation
for type checking and name resolution. Later, the internal rep-
resentation is transformed i.e. simplifying the source, adding
proof obligation, etc. The final output from transformation
generates Boogie code. The VCC allows to add or remove
transformations needed. The Boogie code generated from
transformation does not contain information on imperative
control flow, procedural and functional abstractions of trans-
formed code. It contains large prelude which axiomatizes of C
memory, ownership of objects, states of types, and arithmetic
expressions, this part named prelude. The resultant source
code is given to Boogie program verifier, which converts the
program into set of verification conditions. These verification
conditions are then passed to a theorem prover, in this case
Z3, to be proved.

V. CHALICE

Chalice is an experimental language developed to allow
the verification of concurrent programs. Language support
various features, including dynamic objects and threads cre-
ation, locks, monitors, mutual exclusion, pre-conditions, and
post-conditions. The language supports locking memory lo-
cations at very low-level using permissions. Chalice carries
permissions and transfer of permissions approach to address
the specification for verification of concurrent programs;
permission models also allow Chalice to be used for step-
wise refinement of program specifications. Refinement of
pseudo-codes into more concrete implementation all becomes
source code for Chalice verifier to check the correctness of
refinement and specification. The programmer can specifically
convey assumptions about the code explicitly via annotations.
[9]

The verification methodology of Chalice centers around
permissions and transfer of permissions. Chalice maintains a
record of permissions for each memory location, and threads
can access the memory location if they have sufficient permis-
sion. The framing problem is addressed with the permissions
transfer approach. Threads must have enough permission to
access a location. For instance in a thread, if caller demands
callee to update location it has access on, the callee can not
do unless it acquires the permission of that memory location
from the same thread or thread must have sufficient permis-
sion to in order to call the callee. Permission is calculated as
percentages; full permission is 100% corresponds to write-
permission whereas read-permission is any percentage less
than or equal to 100% and higher than 0%. The ‘ε’ is any
positive fractional value between 0% and 100% represents
the permission value [10]. Chalice programs are translated to
Boogie and verification conditions are generated by Boogie
verifier to be checked withZ3 for their correctness.



VI. V ERVE

High-level computer applications are created on top of low-
level, such as operating systems and run-time language sys-
tems. The security and reliability of such lower-level software
and system are critical. Errors can lead to system software
crashes, data loss, and insecure hardware control. Verve is
another formal verification system that uses Typed Assembly
Language (TAL) with Hoare Logic to accomplish a highly
automated verification. Verve primarily verifies the absence
of many categories of errors in low-level code. The safety of
assembly language instructions, run-time system, and every
component of OS except boot loader can be verified with the
Verve. Type and memory safety are verified with Verve, it has
“Nucleus” which has access to hardware components such
as memory. The“Nucleus” is implementation of memory
allocation, garbage collection, interrupts and their handling,
devices access control, and stacks. The kernel of OS later
builds above the “Nucleus” and applications run on top of
kernel. [11]

The verification methodology of Verve is breaking down
the underlying system software and the run-time language
system into two layers. The kernel application is written in C
and compiled to TAL and checked with an already available
TAL checker [12]. Nucleus mentioned above is written in
assembly language, directly incorporating annotations. These
annotations are better known as assertions such as loop in-
variants, pre- conditions, and post-conditions. These specifica-
tions in assembly language are translated into Boogie. Boogie
verifier relies on Z3 that verifies the conditions automatically.
In fact, one executable statement is translated into 2-3 lines
of proof annotation.

VII. HAVOC

HAVOC (Heap-Aware Verifier Of C) is a static verifier for
C similar to ESC/Java, and Spec#, static verifiers for Java and
C#, respectively. HAVOC is a distinguished verifier deals with
lower-level details of C language. It provides the automatic
update for reachability predicate which is explicitly designed
to deal with pointers and their arithmetic operations. HAVOC
addresses on of the sources of unscalability for automatic
verifiers struggling with the imprecision caused by a heap-
allocated data structures. There are two fundamental cor-
rectness properties, control flow, and memory safety, which
depend on the assertions pointing the contents of the heap
data structure. These reachability predicates are required for
specifying the properties of heap. [13]

HAVOC is designed for verification of C programs with
the specification incorporated as annotation language in C.
HAVOC interpret the annotated program into annotated Boo-
giePL 2 program. Boogie verifier generates the verification
conditions and passes these on to Z3 for checking the truth
of the verification conditions.

2BoogiePL is previous version of the Boogie.

VIII. S PEC#

Spec# is an object-oriented language created by extend-
ing C# with specifications features. Spec#’s goal is to
provide more cost-effective ways to produce high-quality
software. Notable annotations of Spec# are pre-conditions,
post-conditions, object invariance, and non-null types. These
annotations allow the programmer to write specifications ex-
pressing the intention of programmer about data and methods
being used. Spec# compiler performs run-time checks to
assert the specifications. [14]

Spec# performs both static and run-time checking. All
specification annotations are labeled to differentiate the Spec#
annotated and unannotated code. For checking the object in-
variance each class added with a new method that declares an
invariant. Spec# underlying static checking is performed using
Boogie. Boogie is responsible for checking specifications of
a non-contract code, for example, it must determine that the
non-contract code of a procedure meets its post-condition.
BoogiePL code is simple implementation of basic blocks of
statements from Spec# are assignments, assume, assert, and
method call. These properties are added to the program for
making assertions and assumptions on program statements.
Boogie program goes into several translations and ends up
with verification conditions. These verification conditions are
checking with a theorem prover.

IX. EIFFEL AUTOPROOF

Programmers not comfortable with formal verification tech-
niques experience difficulty while verifying the correctness
of programs formally. Eiffel reduces the burden of writing
enormous annotation specifications for program using Auto
Proof approach. AutoProof is a static verifier for Eiffel
programs and part of Eiffel Verification Environment (EVE)
which encompasses numerous verification tool and utilize
their synergy. [15]

Eiffel’s verification with AutoProof is an automated trans-
lation of Effile program into Boogie program. Eiffel programs
contain annotated contracts such as class invariance, pre-
conditions and post-conditions. Some syntactical advances
in Eiffel eliminate the need for many frame conditions.
AutoProof generates standard annotations for automated veri-
fication to decrease the burden on the programmer. AutoProof
relies on Boogie the same way that Chalice and Dafny does.

X. ESC/JAVA

Extended Static Checker for Java (ESC/Java) is a static
compile-time program checker that catches errors in Java
programs. ECS catches more errors than any conventional
verifiers also a reason to be named extended. ESC can
preferably catch error issues like null dereference, array out
of bounds, type conversions. It also provides warnings on
the synchronization issues like race conditions and deadlocks.
Full functional program verification catches ideally all errors
and their absence in a program at extreme cost whereas the
static checking is less expensive but catches limited class



of errors. ESC lies in between two extremes of program
verification domain. [16]

ESC is a modular checker perform checking by verifi-
cation condition generation and automatic theorem proving.
Each module is subroutine or a provided piece of code.
Annotations are used to provide the specification of the
routine being checked. ESC front end parses the java program
with annotations and produces abstract syntax tree and type-
specific background predicate for each class. The next stage
translates each routine into guarded command, where each
sub-command enforces that the parent command is true. The
process of generating verification conditions has sharpened
in ESC. Guarded commands in intermediate representation
are not primarily represented in Boogie. However, they plays
same role as Boogie. These commands are converted into
verification conditions for checking.

XI. HARPO VERIFIER

HARPO (HARdware Parallel Object) project started in
2006 [17]. The mission of the HARPO project is to develop
an industrially viable concurrent language that supports the
wide variety of reconfigurable processor architectures and
GPUs with functional correctness properties using automated
verification [17], [18], [19]. This section contains information
on HARPO Verifier’s methodology and development. Some
of the similar software verification tools are discussed from
Section III to X are compared with HARPO Verifier in this
section.

A. HARPO’s Verification Methodology

The verification methodology of the HARPO verifier is sig-
nificantly related to the previously mentioned verifiers. Since
HARPO langauge is a concurrent language that is based of
conditional critical sections andrendezvousbetween threads.
It employs explicit transfer of permissions in order to verify
concurrent programs. HARPO Verifier uses two different lay-
ers of operations while performing the verification of HARPO
programs. Specifications are written in form of annotations in
standard HARPO syntax. These annotations are ignored when
compiling to C, VHDL, and CUDA. The HARPO Verifier
transforms the annotated program into verification conditions
by translating the program into Boogie. Later, Boogie Verifier
transform the code into verification conditions and check for
their correctness using SMT solver namedZ3.

B. Annotation of Language

HARPO language is incorporated with annotation for its
verification [20]. These annotations are assertions for reason-
ing the correctness of the program. Annotations contain pre-
conditions, post-conditions, class invariants, loop invariants,
claim specifications, assertions, and assumptions [21], [22],
[23].

C. Design and Evaluation

HARPO verifier design consists of a parser, checker, code
generator, error report processor. The parser creates the AST

with valid HARPO program syntax. The checker performs
name resolution, type checking, and creation. The code gen-
erator takes AST and generates the equivalent code in Boogie
[7,20]. The Boogie verifier takes Boogie code and transforms
it into verification conditions. The verification condition is
checked with Z3. Later, the verification errors are processed
by an error processor to refer back the error in HARPO
source code. Testing the functionality of the HARPO Verifier
is performed with unit tests (commands and expressions),
system testing is performed for some examples [24].

HARPO verifier used Dafny’s inline annotations method-
ology. The idea of permissions transfer is tested in Chalice,
and HARPO Verifier is using that idea of permission transfer
differently for verification concurrent programs. All verifiers
reported in this paper employe Boogie and Z3 as their
underlying verification methodology.

XII. C ONCLUSION

In this paper, some automated verifiers designed with
on staging approach for generating verification conditions
are reported and provide a motivation for HARPO Verifier.
Each verifier targets different areas of software verification
problems. However, all of them use the same underlying
verifier for generating verification conditions and checking
them with SMTs. Boogie is known and proved to be a
beneficial resource for verification condition generation and
checking. Dafny uses dynamic frame theory and targets the
verification problems involving data abstraction and modular
specifications. VCC is layered on top of the C language and is
used for verification of C programs with inline annotations of
specifications and targets the verification of commercial and
system software. The Chalice was an experimental language
and used the idea of permission and transfer of permission
for verification; Chalice featured the automated verification
of concurrent programs using transfer of permissions. Verve
is a distinguished verifier targeted with lower-level system
software verification using two layers approach, Nucleus, and
kernel. Verification of programs containing pointers is a chal-
lenge for programmers, and HAVOC is an excellent resource
for verifying programs heap data allocation; it reduces the
chances of imprecision due to dangling pointer references.
Spec# is easily adoptable verification system as it is extension
to an already in-demand language C#; programmers can
easily accept the change and take advantage of specifications
and verification for software solutions. Eiffel reduced the
efforts of making explicit annotations for dynamic frames
using AutoProof. ESC/Java is not exactly using the Boogie
language but similar staging as rest of the static verifiers
mentioned. ESC/Java project targeted the widely accepted
language for object-oriented software development, and it
is much closer to static checking with the capability of
addressing numerous error categories. HARPO Verifier is
addition to list of static verifiers targeting the verification
of concurrent high-level programming language designed to
target reconfigurable, GPUs, and microprocessors.



ACKNOWLEDEMENTS

This research was supported in part by funds from the Na-
tional Science and Engineering Research Council (NSERC)
of Canada.

REFERENCES

[1] E. Dijkstra, ”The humble programmer”, Communications of the ACM,
vol. 15, no. 10, pp. 859-866, 1972.

[2] O. Hasan and S. Tahar. (2015). Formal Verification Methods. In M.
Khosrow-Pour (Ed.), Encyclopedia of Information Science and Tech-
nology, Third Edition (pp. 7162-7170). Hershey, PA: IGI Global.
doi:10.4018/978-1-4666-5888-2.ch705

[3] K.R.M. Leino, This is Boogie 2, Microsoft Re-
search, Tech. Rep., 2008, draft. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=147643

[4] M. Leonardo and B. Nikolaj “Z3: An Effecient SMT Solver. In: Tools
and Algorithms for the Construction and Analysis of Systems.” Ed. By
C. R. Ramakrishnan and R. Jakob. Vol. 4963. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin, Apr. 2008. Chap. 24, pp.
337-340. isbn: 978-3-540-78799-0. doi:10.1007/978-3-540-78800-3 24.

[5] I. T. Kassios. “The dynamic frames theory. In: Formal Aspects of
Computing” 23 (3 2011), pp. 267-288. issn: 0934-5043. doi: 10 . 1007
/s00165-010-0152-5.

[6] W. Benjamin “Deductive verification of object-oriented software: dy-
namic frames, dynamic logic and predicate abstraction”. PhD thesis.
Karlsruhe Institute of Technology, 2011.

[7] K.R.M. Leino and V. Wstholz, (2014). “The Dafny integrated develop-
ment environment.” arXiv preprint arXiv:1404.6602.

[8] Vertisoft XT: The Verisoft XT project. http://www.verisoftxt.de (2007)
[9] K.R.M. Leino, P. Mller, and J. Smans, Verification of concurrent pro-

grams with Chalice, in Foundations of Security Analysis and Design V,
ser. LNCS, vol. 5705, 2009.

[10] B. John, “Checking interference with fractional permissions. In Radhia
Cousot, editor, Static Analysis” 10th International Symposium, SAS
2003, volume 2694 of Lecture Notes in Computer Science, pages 5572.
Springer, June 2003.

[11] Y. Jean and C. Hawblitzel. ”Safe to the last instruction: automated
verification of a type-safe operating system.” ACM Sigplan Notices 45.6
(2010): 99-110.

[12] J. Chen, C. Hawblitzel, F. Perry, M. Emmi et al.“Type-preserving
compilation for large-scale optimizing object-oriented compilers.”
SIGPLAN Not., 43(6):183192, 2008. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1379022.1375604.

[13] S. Chatterjee, S.K. Lahiri, S. Qadeer, et al. (2007) “A Reachability
Predicate for Analyzing Low-Level Software.” In: O. Grumberg, M.
Huth (eds) Tools and Algorithms for the Construction and Analysis of
Systems. TACAS 2007. Lecture Notes in Computer Science, vol 4424.
Springer, Berlin, Heidelberg

[14] B. Mike, K. Rustan M. Leino, and S. Wolfram. “The Spec programming
system: An overview. In Construction and Analysis of Safe, Secure, and
Interoperable Smart devices (CASSIS)” volume 3362 of Lecture Notes
in Computer Science, pages 4960. Springer, 2004.

[15] J. Tschannen, C.A. Furia, M. Nordio, et al. (2011). “Verifying Eiffel
programs with Boogie.” arXiv preprint arXiv:1106.4700.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge et al. Extended static
checking for Java. In PLDI, pages 234245. ACM, 2002.

[17] T.S. Norvell, “Language design for CGRA project. design 8.” [unpub-
lished draft], Memorial University of Newfoundland, 2013.

[18] T.S. Norvell, A.T. Md.Ashraful, L.Xiangwen, Z. Dianyong, HARPO/L:
A language for hardware/software codesign. in Newfoundland Electrical
and Computer Engineering Conference (NECEC), 2008.

[19] T. S. Norvell, A grainless semantics for the HARPO/L language in
Canadian Electrical and Computer Engineering Conference, 2009.

[20] T. S. Norvell, “Annotations for Verification of HARPOL. Draft Version
0.” [unpublished draft], Memorial University of Newfoundland 2014.

[21] I. Ahmed, T.S. Norvell, R. Venkatesan, “Verifying the correctness of
HARPO Programs in Newfoundland Electrical and Computer Engineer-
ing Conference (NECEC), 2018.

[22] Y.G. Fatemeh, “Verification of the HARPO language Masters thesis,
Memorial University, 2014.

[23] T. S. Norvell, “HARPO/L: “Concurrent Software Verification with Ex-
plicit Transfer of Permission” in Newfoundland Electrical and Computer
Engineering Conference (NECEC), 2017.

[24] I. Ahmed, T.S. Norvell, R. Venkatesan, “Design and Verification of
Counter Using HARPO Programming Language” in Newfoundland
Electrical and Computer Engineering Conference (NECEC), 2019.


